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RESEARCH

Sorghum [Sorghum bicolor (L.) Moench] is primarily a self-polli-
nated species with a low but measurable frequency of outcross-

ing (Shertz and Dalton, 1980; Pedersen et al., 1998). Sorghum 
exhibits hybrid vigor, and >95% of sorghum varieties grown for 
grain in the United States are F

1
 hybrid varieties (Axtell et al., 

1999). Hybrids provide a 20 to 60% grain yield advantage (Axtell 
et al., 1999). While most sorghum is grown in the United States 
for grain or for forage, sorghum also exists as sweet sorghum 
types. These types have juicy stems with high sugar concentra-
tion. Instead of maximizing translocation of photosynthate into 
grain, sweet sorghum accumulates large amounts of sugar in stem 
parenchyma from anthesis until physiological maturity. In the 
United States, sweet sorghum has historically been and is cur-
rently used for syrup production. However, interest in sweet sor-
ghum as a feedstock for ethanol production is increasing (Rooney 
et al., 2007). Unlike hybrid grain sorghum, current U.S. sweet 
sorghum varieties are pure-line varieties.
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ABSTRACT

Although heterosis is well established in grain 

and forage sorghum [Sorghum bicolor (L.) 

Moench], reports of heterosis in sweet sor-

ghum are limited to results from grain sorghum 

× sweet sorghum hybrids. Recent development 

of cytoplasmic male-sterile sweet sorghum lines 

allows creation of sweet sorghum hybrids for 

research and industry. Male sterility may also 

affect allocation of photosynthate to plant parts, 

creating the potential to increase sugar con-

tent in stems by eliminating seed as a sink. The 

objectives of this study were to compare per-

formance of A
3
 cytoplasmic male-sterile lines 

and A
3
 cytoplasmic male-sterile hybrids to fer-

tile B
3
 counterparts and to each other. A

3
 cyto-

plasmic male-sterile ‘Dale’, ‘Wray’, ‘Sugar Drip’, 

and N100 were crossed in all combinations to 

their male-fertile counterparts, resulting in 20 

genotypes including the male-fertile lines. The 

20 genotypes were grown in a randomized com-

plete block in 2004 and 2005 at Lexington, KY. 

Male-sterile hybrids and lines had higher brix 

than male-fertile lines. Hybrids produced greater 

stalk yield due to taller plants with greater stem 

diameter. Juice fraction and juice composition 

remained relatively unchanged. Only six hybrids 

showed positive heterosis for brix. The greater 

juice yield and higher sugar content of selected 

hybrids such as A
3
 N100 × Dale could produce 

more total syrup or ethanol than current pure-

line sweet sorghum varieties.
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Heterosis in sorghum is expressed by earlier blooming, 
increased height, larger stems, greater production of grain 
and biomass, and larger panicle heads with a higher thresh-
ing percentage (Quinby, 1963). Earlier fl owering and greater 
biomass from increased height and larger stems are all sought-
after traits for sweet sorghum. In comparing 24 grain sor-
ghum hybrids with their parents, 23 had higher grain yield; 
however, only 16 were taller, nine bloomed earlier, and just 
fi ve had greater stalk diameter than the superior parent (Kirby 
and Atkins, 1968). There has been little research on heterosis 
in sweet sorghum, although some information on character-
istics valued in sweet sorghum production can be extracted 
from grain sorghum hybrid research. When short grain sor-
ghum types were crossed with three tall genetically diverse 
sorghum accessions, midparent heterosis for grain yield was 
80% with a general combining ability:specifi c combining 
ability (GCA:SCA) ratio of 3.56:1. Midparent heterosis for 
height was 38% with a GCA:SCA ratio of 5.88:1 (Niehaus 
and Pickett, 1966). The high GCA:SCA ratios suggest the 
likelihood of most hybrids exhibiting heterosis for these traits.

In a set of 28 grain sorghum × sweet sorghum hybrids, 
11 hybrids showed signifi cant high-parent heterosis for green 
stalk yield, only two showed high-parent heterosis for per-
cent extractable juice, and none showed signifi cant high-
parent heterosis for juice brix (Selvi and Palanisamy, 1987). 
In a similar study involving hybrids from four grain sorghum 
A-lines crossed to 10 sweet sorghum restorer lines, overall 
heterosis was signifi cant for plant height, green cane yield, 
and commercial cane sugar yield (Meshram et al., 2005).

Production of hybrid sorghum seed depends on 
cytoplasmic male sterility. Along with providing for 

economical seed production, male sterility may also aff ect 
the allocation of photosynthate to diff erent plant parts. In 
rice (Oryza sativa L.), Lin and Lin (1994) concluded steril-
ity changed the pattern of assimilate partitioning instead 
of reducing photosynthesis and that the stem was the 
most important alternative sink. Limiting seed produc-
tion in sweet sorghum produces similar changes. Broad-
head (1979) reported a 1-degree increase in brix following 
deheading before grain formation. Early deheading of 
sweet sorghum is recommended, as stem brix decreases 
from 19 degrees when deheaded at early seed stage to 
15 degrees when deheaded in the hard-dough stage of 
seed development (Bitzer and Fox, 1994). Fortmeier and 
Schubert (1995) measured a constant soluble carbohydrate 
concentration in the stems of sweet sorghum male-ster-
ile plants compared with a 20% decline from 34 d after 
anthesis until maturity in fertile sweet sorghum plants. 
Karper and Quinby (1963) reported an increase in stem 
sugar from 15 to 17% when male-sterile plants did not set 
seed vs. when cross-pollination and seed set was allowed. 
Although nonsignifi cant, Clark et al. (1984) reported 
total stem sugar at 109 when expressed as (sterile/fertile) 
× 100 for three sterile–fertile sorghum pairs. There is 
thus the potential for male sterility to positively infl uence 
brix in sweet sorghum stems.

Hybrid sorghum is produced using the A
1
 cytoplas-

mic male-sterility system because growers and breeders 
are familiar with it, and numerous lines restore fertility in 
the A

1
 system, making production of fertile hybrids pos-

sible. However, other cytoplasmic male-sterility systems 
are available, and one of them, A

3
, could be particularly 

useful for production of male-sterile hybrids because few 
lines have been shown to restore fertility in A

3
 cytoplasm 

(Bosques-Vega et al., 1989; Torres-Cardona et al., 1990).
The objectives of this study were to: (i) compare per-

formance of A
3
 cytoplasmic male-sterile lines to iso-cyto-

plasmic fertile B
3
 lines, (ii) compare performance of A

3
 

cytoplasmic male-sterile hybrids with fertile B
3
 versions 

of their parental lines, and (iii) compare performance of 
A

3
 cytoplasmic male-sterile hybrids to A

3
 cytoplasmic 

male-sterile versions of their parental lines.

MATERIALS AND METHODS

Development of Genetic Material
The sweet sorghum varieties ‘Dale’ (Broadhead and Cole-

man, 1973), ‘Wray’ (Broadhead et al., 1981), and ‘Sugar Drip’ 

(McCall et al., 1936), and the sweet sorghum germplasm N100 

(Gorz et al., 1990) were previously male-sterilized in A
3
 cyto-

plasm (Pedersen and Toy, 1997). The male-sterile versions of 

these lines were crossed in all combinations to the male-fer-

tile versions of these same lines. All four male-fertile lines are 

male-sterility maintainers or B
3
–lines to A

3
 cytoplasm (none 

restore fertility), so the resulting hybrids were all male-sterile. 

Seed of the male-fertile lines were also produced, resulting in 

the 20 genotypes used in this study (Table 1).

Table 1. Pedigrees and synonyms for 12 sweet sorghum 

male-sterile hybrids and their male-sterile and fertile pure-

line parents (Pedersen and Toy, 1997).

Pedigree Synonym

A
3
N151 × ‘Wray’ A

3
 ‘Dale’ × Wray

A
3
N151 × ‘Sugar Drip’ A

3
 Dale × Sugar Drip

A
3
N151 × N100 A

3
 Dale × N100

A
3
N151 A

3
 Dale

Dale Dale

A
3
N153 × Dale A

3
 Wray × Dale

A
3
N153 × Sugar Drip A

3
 Wray × Sugar Drip

A
3
N153 × N100 A

3
 Wray × N100

A
3
N153 A

3
 Wray

Wray Wray

A
3
N154 × Dale A

3
 Sugar Drip × Dale

A
3
N154 × Wray A

3
 Sugar Drip × Wray

A
3
N154 × N100 A

3
 Sugar Drip × N100

A
3
N154 A

3
 Sugar Drip

Sugar Drip Sugar Drip

A
3
N159 × Dale A

3
 N100 × Dale

A
3
N159 × Wray A

3
 N100 × Wray

A
3
N159 × Sugar Drip A

3
 N100 × Sugar Drip

A
3
N159 A

3
 N100

N100 N100
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value – value of the superior parent [either A
3
 female line or B

3
 

male line]) was calculated for each hybrid for each trait.

RESULTS

The genotypes (12 male-sterile hybrids, 4 male-sterile 
lines, and 4 male-fertile lines) exhibited signifi cant varia-
tion for every measured trait (Table 2). The environment 
in 2004 produced a greater juice yield than the environ-
ment in 2005. Conversely, brix was higher in 2005 than 
in 2004. While plant growth (stalk height and diameter) 
did not diff er in the 2 yr, the plants lodged signifi cantly 
more in 2005 than in 2004. Although planted on 11 May 
in each year, the sorghum fl owered 4 d earlier in 2005.

The male-sterile hybrids produced 18% more biomass 
and 20% more juice than the male-sterile lines as well as 
17% more biomass and 9% more juice than the fertile lines 
(Tables 3 and 4). Compared with the male-sterile lines, the 
greater biomass of the hybrids resulted from both 22-cm 
taller plants and 1.2-mm greater stalk diameter (Table 5). 
The juice yield and stalk yield did not diff er signifi cantly 
between the fertile and sterile parental lines. The juice from 
the male-sterile hybrids and lines had a higher brix than 
the juice from the fertile lines. The hybrids produced 20% 
more sugar yield than the male-sterile lines and 14% more 
than the fertile lines. The fertile lines lodged more than the 
sterile lines by 0.4 unit score due to both 16-cm taller plants 
and the increased leverage on the stem exerted by the seed 
weight of the fertile panicle. While the hybrids fl owered 
at similar dates to the A

3
 female lines, the A

3
 female lines 

fl owered 2.5 d earlier than the B
3
 male lines, and the A

3
 

hybrids fl owered 3.7 d earlier than the B
3
 male lines.

High-parent heterosis was signifi cant for at least one 
hybrid combination for each of the traits except lodging 
(Tables 3–5). Six of the 12 hybrids showed high-parent het-
erosis for stalk yield (Table 4). These six hybrids averaged 
17% heterosis for stalk yield, with A

3
Dale × N100 exhibit-

ing 28% heterosis. No hybrids with A
3
Sugar Drip as the 

female parent exhibited high-parent heterosis for stalk yield. 
Three hybrids showed signifi cant high-parent heterosis for 

Field Experiment
The experiment was grown on a Maury silt loam soil (fi ne, 

mixed, semiactive, mesic Typic Paleudalf ) in 2004 and 2005 at 

the University of Kentucky research farm, Lexington, KY (lat 

38° N). The 20 genotypes were planted in a randomized com-

plete block design with four replications on 11 May both years. 

Plots were three rows wide, 6 m long, with 0.76-m row spac-

ing. Planting rate was 12 seeds m–1. Weeds were controlled using 

preplant-incorporated and postemergence-applied herbicides 

along with an herbicide safener seed treatment as recommended 

for grain sorghum in Kentucky (Martin and Green, 2003). Data 

were collected on the center of the three rows in a plot. Nitrogen 

was applied 30 d after planting at approximately growth stage 2 

(Vanderlip, 1993) at 35 kg ha–1 as recommended for sweet sor-

ghum for syrup (Bitzer, 1994). Before anthesis, as the fl ower head 

was emerging from the fl ag leaf, the fl ower head was bagged with 

a sorghum pollinating bag on 20 plants in the center row of the 

plot. Plants were bagged on all plots, both male-fertile and male-

sterile entries, to maintain sterility and to base the comparison 

on bagged plants of both the sterile and fertile entries (Broad-

head, 1979). All data except for lodging and disease ratings were 

collected from these bagged plants. Lodging and disease ratings 

were assigned on a whole-plot visual evaluation.

Data were collected for heading date (date on which 
the heads of 20 plants were bagged before pollen shed), and 
lodging (score 5 to 1, with 5 = no lodging to 1 = >75% plants 
lodged). Plots were harvested when the seeds on the male-
fertile pure-line varieties were at the hard-dough stage, 
stage 8 (Vanderlip, 1993). Twelve plants were harvested per 
plot. Panicles were removed. Plant height (cutting point to 
point of panicle removal, cm) and stem diameter (fourth 
internode from the cutting point, mm) were measured on 
two of the 12 plants, and the mean of the two measure-
ments was analyzed. Leaves were stripped from the plant, 
and the weight (kg) of 12 stems was recorded. The stripped 
stems were crushed with a three-roller horizontal sweet sor-
ghum mill, and the juice was collected and weighed (kg). 
Juice brix (% sugar + starch) was measured with a handheld 
manual refractometer for brix range 0 to 30%. Sugar yield 
was calculated as kg juice × % brix.

Statistical Analysis
The data were analyzed by Proc MIXED of SAS (Statistical 

Analysis System version 9.1, SAS Institute, Cary, NC) with 

year, replication, and year(replication) included in the RAN-

DOM statement and type and entry(type) included in the 

MODEL statement, with type being B
3
 line, A

3
 line, or hybrid. 

For each trait, homogeneity of error variance across years was 

tested using a Levene’s test, and models with heterogeneous 

variance were fi tted by inclusion of a REPEATED statement 

with GROUP = year. Least squares means were estimated and 

single degree of freedom comparisons made among LSMEANS 

by inclusion of the DIFF option. Comparisons were declared 

signifi cant at P = 0.05. Single degree of freedom compari-

sons of B
3
 lines vs. A

3
 lines, A

3
 hybrids vs. A

3
 lines, and A

3
 

hybrids vs. B
3
 lines are reported. High-parent heterosis (hybrid 

Table 2. Signifi cance levels of genotype and year plus the 

year means for 12 sweet sorghum male-sterile hybrids and 

their male-sterile and fertile pure-line parents, 2004 and 

2005, Lexington, KY.

Trait Genotype Year 2004 2005

Stalk yield (g plant–1) ** NS† 556 563

Juice yield (g plant–1) ** ** 250 216

Brix (%) ** ** 19.1 19.5

Height (cm) ** NS 251 259

Stem diameter (mm) * NS 20 20

Lodging (score)‡ * * 4.6 3.5

Maturity (d from planting to heading) ** ** 88 92

*Signifi cant at P ≤ 0.05.

**Signifi cant at P ≤ 0.01.
†NS, not signifi cant at P ≤ 0.05.
‡Score 5 to 1: 5 = no lodging to 1 = >75% plants lodged.
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juice yield, while only the hybrid A
3
N100 × Dale exhibited 

high-parent heterosis for juice brix (Table 3). Combining 
these two traits produced six hybrids exhibiting high-par-
ent heterosis for sugar yield (Table 3). Mirroring stalk yield 
heterosis, these six hybrids averaged 16% heterosis for sugar 
yield, with A

3
Dale × N100 exhibiting 28% heterosis.

DISCUSSION
Sorghum with >8% brix in the juice of the stem is gener-
ally defi ned as sweet sorghum. The stems have to be juicy 
(d recessive to D) instead of dry and sweet (x recessive to X) 
instead of nonsweet (Rooney, 2000). Forage sorghum also 
has sweet, juicy stems to increase palatability for livestock, 
but the growth habit is diff erent from sweet sorghum used for 
syrup. Sweet sorghum varieties used for syrup are tall (approx-
imately 2 m) with thick stems (approximately 15 mm), while 
forage sorghum is shorter with much fi ner stems. While some 
grain sorghum varieties (e.g., Tx623) have sweet, juicy stems, 
the grain sorghum varieties are shorter (usually having reces-
sive alleles at three of the four Dw genes) than sweet sorghum 
varieties (having recessive alleles at two or one Dw genes). 
Sweet sorghum varieties also diff er from grain sorghum in 
that they have two sinks for photosynthate, the seeds and 
the stems, while grain sorghum has been selected as having 
one primary sink for photosynthate, the grain. Most hybrid 

research involving sweet sorghum has utilized one grain sor-
ghum parent, the female parent with cytoplasmic male steril-
ity (e.g., ATx623; FAO, 1994).

The conversion of four sweet sorghum varieties to cyto-
plasmic male-sterile lines allowed this initial investigation 
into the hybrid vigor for sweet sorghum characteristics in 
an entirely sweet sorghum background. Sweet sorghum for 
syrup is grown primarily in the southeastern United States, 
although it extends north and west to Wisconsin, Iowa, and 
Minnesota, with up to 12,140 ha (30,000 acres) being grown 
for syrup production (National Sweet Sorghum Producers 
and Processors Association, 2009). Sweet sorghum for eth-
anol can be grown in diverse and widespread areas of the 
United States. Desirable attributes of sweet sorghum varieties 
used for syrup production include a high yield of medium to 
large stalks, low lodging, and a high percentage of extract-
able juice with high total soluble solids (brix) content, mostly 
sugars. These attributes will also be desirable for using sweet 
sorghum as a bioenergy crop for ethanol production.

Hybrids will be useful for increasing biomass yields of 
sweet sorghum (Table 4). Hybrids produced a greater stalk 
yield due to taller plants with greater stem diameter. This 
greater stalk yield translated into a greater juice amount 
even though there was no hybrid vigor for juice fraction. 
The greater juice yield and higher brix of the hybrids will 

Table 3. Comparisons of sugar traits of sweet sorghum B
3
 lines, A

3
 lines, and hybrids grown at Lexington, KY, in 2004 and 2005.

Group 
or line

Juice yield Juice brix Sugar yield Differences between groups or lines†

Mean‡

High-parent 
heterosis§ Mean‡

High-parent 
heterosis Mean‡

High-parent 
heterosis Comparison

Juice 
yield

Juice 
brix

Sugar 
yield

———— g plant–1 ———— —————— % —————— ——— g plant–1 ——— g plant–1 % g plant–1

B
3
 lines 220 19.1 42 B

3
 lines–A

3
 lines 14 −0.5* 2

A
3
 lines 206 19.6 40 Hybrids–A

3
 lines 40* −0.1 8*

Hybrids 246 19.5 48 Hybrids–B
3
 lines 20* 0.4* 6*

A
3
 ‘Dale’ × ‘Wray’ 227 34* 20.0 −0.06 45 5*

A
3
 Dale × ‘Sugar Drip’ 261 23 19.4 −0.02 51 7*

A
3
 Dale × N100 242 55* 19.1 −0.05 46 10*

A
3
 Dale 186 19.8 36

Dale 261 18.4 48 B
3
 Dale–A

3
 Dale 75* −1.4* 12*

A
3
 Wray × Dale 269 8 20.2 −0.03 54 6*

A
3
 Wray × Sugar Drip 238 0 19.5 −1.0 46 2

A
3
 Wray × N100 230 24 19.3 −1.2 44 2

A
3
 Wray 206 20.5 42

Wray 193 20.7 40 B
3
 Wray–A

3
 Wray −13 0.2 −2

A
3
 Sugar Drip × Dale 258 −3 19.8 0.5 51 3

A
3
 Sugar Drip × Wray 219 −30 19.5 −1.1 43 −5

A
3
 Sugar Drip × N100 251 2 19.3 0.1 48 0

A
3
 Sugar Drip 249 19.3 48

Sugar Drip 238 18.7 44 B
3
 Sugar Drip–A

3
 Sugar Drip −11 −0.6 −4

A
3
 N100 × Dale 266 5 19.7 0.7* 53 5*

A
3
 N100 × Wray 219 26 19.2 −1.5 42 2

A
3
 N100 × Sugar Drip 274 38* 19.2 0.2 52 8*

A
3
 N100 185 19.0 35

N100 187 18.6 35 B
3
 N100–A

3
 N100 2 −0.4 0

*Signifi cant at P ≤ 0.05.
†Signifi cance determined using a two-tailed t test of least squares means.
‡Least squares mean.
§Signifi cance of high-parent heterosis was determined using a one-tailed t test of least squares means.
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produce more total syrup or ethanol than current pure-line 
sweet sorghum varieties, represented by the B

3
 lines in this 

study (Table 3). These results from hybrid varieties have also 
been seen in crosses between sweet, juicy grain sorghum 
and sweet sorghum. For example, compared with the best 
performing sweet sorghum pure-line variety the Chinese 
hybrid Shennong No. 2 (ATx623 × ‘Roma’) produced 4% 
more biomass per hectare with no change in juice fraction 
or brix (FAO, 1994). Similarly Selvi and Palanisamy (1987) 
reported 19 of 28 grain sorghum × sweet sorghum hybrids 
with positive high-parent heterosis for stalk yield. For brix, 
however, six hybrids showed positive heterosis while 22 of 
the 28 hybrids showed negative heterosis. Heterosis manifests 
itself as greater growth and biomass production, but the juice 
fraction and juice composition remain relatively unchanged.

A notable spin-off  of the basic research on sweet sorghum 
heterosis described above was the release of a male-sterile 
sweet sorghum hybrid for use in syrup production. Based on 
the high-parent heterosis exhibited by several of the hybrids 
in this experiment, in 2006 we conducted further agronomic 
tests of A

3
 Wray × Dale, A

3
 Sugar Drip × Dale, A

3
 N100 × 

Dale, and A
3
 N100 × Sugar Drip at three Kentucky locations 

using A
3
 Dale as a check. Bagging of panicles was unnec-

essary since no entries produced fertile pollen. Combined 
across fi ve environments in 2004, 2005, and 2006, A

3
 N100 

× Dale and A
3
 Sugar Drip × Dale produced 24% more stalk 

and juice weight with equal brix, juice percentage, and lodg-
ing compared with A

3
 Dale. A

3
 N100 × Dale fl owered 5 

d earlier than A
3
 Dale and A

3
 Sugar Drip × Dale. In 2007 

the Kentucky Agricultural Experiment Station, cooperating 
with the USDA at the University of Nebraska, released A

3
 

N100 × Dale as the male-sterile hybrid variety KN-Morris. 
This hybrid is intended for sweet sorghum syrup produc-
tion in the primary syrup production region centered in 
Kentucky. It is recognized that male-sterile condition of this 
hybrid increases its susceptibility to sorghum ergot caused by 
Claviceps africana Frederikson, Mantle & De Milliano (Ban-
dyopadhyay et al., 1998), but occurrence of this pathogen 
has not yet been documented in this region. The name KN-
Morris highlights the cooperative development of the hybrid 
between Kentucky (K) and Nebraska (N) and recognizes 
Dr. Morris Bitzer, the long-term executive secretary of the 
National Sweet Sorghum Producers and Processors Associa-
tion, a sweet sorghum production expert, and a tireless pro-
moter of the sweet sorghum syrup industry.

References
Axtell, J., I. Kapran, Y. Ibrahim, G. Ejeta, and D.J. Andrews. 1999. 

Heterosis in sorghum and pearl millet. p. 375–386. In J.G. Coors 
and S. Pandey (ed.) Genetics and exploitation of heterosis in 
crops. ASA, Madison, WI.

Table 4. Stalk yield and maturity of sweet sorghum B
3
 lines, A

3
 lines, and hybrids grown at Lexington, KY, in 2004 and 2005.

Group 
or line

Stalk yield Maturity† Differences between groups or lines‡

Mean§ High-parent heterosis¶ Mean§ High-parent heterosis Comparison Stalk yield Maturity

–––––––––––– g plant–1 –––––––––––– –––––––––––– d –––––––––––– g plant–1 d

B
3
 lines 508 93.0 B

3
 lines–A

3
 lines 7 2.5*

A
3
 lines 501 90.5 Hybrids–A

3
 lines 94* −1.2

Hybrids 595 89.3 Hybrids– B
3
 lines 87* −3.7*

A
3
 Dale × Wray 560 60 88.4 −5.6

A
3
 Dale × Sugar Drip 607 76* 94.0 −0.6

A
3
 Dale × N100 591 131* 88.5 −5.6

A
3
 Dale 460 94.0

Dale 576 95.2 B
3
 Dale–A

3
 Dale 116* 1.1

A
3
 Wray × Dale 643 67* 90.4 −4.8

A
3
 Wray × Sugar Drip 623 92* 89.8 −4.8

A
3
 Wray × N100 526 27 86.8 −3.2

A
3
 Wray 499 87.2

Wray 500 92.4 B
3
 Wray–A

3
 Wray 1 5.2*

A
3
 Sugar Drip × Dale 618 42 95.0 0.2

A
3
 Sugar Drip × Wray 584 19 86.4 −7.7

A
3
 Sugar Drip × N100 580 15 88.0 −6.0

A
3
 Sugar Drip 565 94.1

Sugar Drip 531 94.6 B
3
 Sugar Drip–A

3
 Sugar Drip −34 0.5

A
3
 N100 × Dale 661 85* 90.5 −4.7

A
3
 N100 × Wray 543 43 85.2 −7.1

A
3
 N100 × Sugar Drip 599 67* 88.8 −5.8

A
3
 N100 480 86.7

N100 426 90.0 B
3
 N100–A

3
 N100 −54 3.2*

*Signifi cant at P ≤ 0.05.
†Days from planting to heading.
‡Signifi cance determined using a two-tailed t test of least squares means.
§Least squares mean.
¶Signifi cance of high-parent heterosis was determined using a one-tailed t test of least squares means.



CROP SCIENCE, VOL. 50, SEPTEMBER–OCTOBER 2010  WWW.CROPS.ORG 1793

Bandyopadhyay, R., D.E. Frederickson, N.W. McLaren, G.N. 
Odvody, and M.J. Ryley. 1998. Ergot: A new disease threat to 
sorghum in the Americas and Australia. Plant Dis. 82:356–367.

Bitzer, M.J. 1994. Production of sweet sorghum for syrup in Ken-
tucky. Univ. of Kentucky Coop. Ext. Serv. AGR 122. Kentucky 
Agric. Exp. Stn., Lexington.

Bitzer, M.J., and J.D. Fox. 1994. Processing sweet sorghum for syrup 
in Kentucky. Univ. of Kentucky Coop. Ext. Serv. AGR 123. 
Kentucky Agric. Exp. Stn., Lexington.

Bosques-Vega, A., A. Sotomayor-Rios, S. Torres-Cardona, H.R. 
Perrerly, and K.F. Schertz. 1989. Maintainer and restorer reac-
tions with B

1
, A

2
, and A

3
 cytoplasm of lines from the sorghum 

conversion program. MP-1676. Texas Agric. Exp. Stn., Texas 
A&M Univ., College Station.

Broadhead, D.M. 1979. Infl uence of bagging sweet sorghum panicles 
on stalk yield and juice quality. Crop Sci. 19:195–196.

Broadhead, D.M., and O.H. Coleman. 1973. Registration of Dale 
sweet sorghum. Crop Sci. 13:776.

Broadhead, D.M., K.C. Freeman, and N. Zummo. 1981. Registration 
of Wray sweet sorghum. Crop Sci. 21:987.

Clark, J.W., R.A. Creelman, and F.R. Miller. 1984. Impacts of ste-
rility on plant characters and fermentable carbohydrates in sor-
ghum. PR-4192. Texas Agric. Exp. Stn., Texas A&M Univ., 
College Station.

FAO. 1994. Breeding and cultivation of sweet sorghum. Chapter 2. 
In L. Nan et al. (ed.) Integrated energy systems in China—The 
cold Northeastern region experience. Available at http://www.
fao.org/docrep/T4470E/t4470e05.htm (verifi ed 6 May 2010). 
Corporate Document Repository, FAO, Rome.

Fortmeier, R., and S. Schubert. 1995. Storage of non-structural 
carbohydrates in sweet sorghum [Sorghum bicolor (L) Moench]: 

Comparison of sterile and fertile lines. J. Agron. Crop Sci. 
175:189–193.

Gorz, H.J., F.A. Haskins, and B.E. Johnson. 1990. Registration of 15 
germplasm lines of grain sorghum and sweet sorghum. Crop Sci. 
30:762–763.

Karper, R.E., and J.R. Quinby. 1963. Sugary endosperm in sorghum. 
J. Hered. 54:121–126.

Kirby, J.S., and R.E. Atkins. 1968. Heterotic response for vegetative 
and mature plant characters in grain sorghum, Sorghum bicolor (L.) 
Moench. Crop Sci. 8:335–339.

Lin, J.Y., and J.L. Lin. 1994. Post-heading partitioning dynamics of 
total nonstructural carbohydrates in rice plants as infl uenced by 
sink manipulation. J. Agric. Assoc. China 165:53–59.

Martin, J.R., and J.D. Green. 2003. Weed control recommendations 
for Kentucky farm crops—2003. Univ. of Kentucky Coop. Ext. 
Serv. AGR 6. Kentucky Agric. Exp. Stn., Lexington.

McCall, M.A., H.B. Brown, J.A. Clark, E.F. Gaines, H.K. Hayes, 
and W.J. Morse. 1936. Agronomic aff airs, minutes of the twenty-
ninth annual meeting of the society: Varietal standardization and 
registration. J. Am. Soc. Agron. 28:1027–1028.

Meshram, M.P., S.B. Atale, R.D. Murumkar, and P.B. Raut. 2005. 
Heterosis and heterobeltiosis studies in sweet sorghum. Ann. 
Plant Phys. 19:96–98.

National Sweet Sorghum Producers and Processors Association. 2009. 
Sweet sorghum FAQs. Available at http://www.ca.uky.edu/
nssppa/sorghumfaqs.html (verifi ed 6 May 2010). Natl. Sweet 
Sorghum Producers and Processors Assoc., Lexington, KY.

Niehaus, M.H., and R.C. Pickett. 1966. Heterosis and combining 
ability in a diallel cross in Sorghum vulgare Pers. Crop Sci. 6:33–36.

Pedersen, J.F., and J.J. Toy. 1997. Registration of 29 forage sorghum 
genetic stocks in A

3
 cytoplasm. Crop Sci. 37:1408–1409.

Table 5. Stalk height, diameter, and lodging of sweet sorghum B
3
 lines, A

3
 lines, and hybrids grown at Lexington, KY in 2004 and 2005.

Group
 or line

Stalk height Stalk diameter Lodging† Differences between groups or lines‡

Mean§

High-parent 
heterosis¶ Mean§

High-parent 
heterosis Mean§

High-parent 
heterosis Comparison

Stalk 
height

Stalk 
diam. Lodging

———— cm ———— ———— mm ———— ———— score ———— cm mm score

B
3
 lines 255 19.7 3.9 B

3
 lines–A

3
 lines 16* 0.5 −0.4*

A
3
 lines 239 19.2 4.3 Hybrids–A

3
 lines 22* 1.2* −0.2

Hybrids 261 20.4 4.1 Hybrids–B
3
 lines 6 0.7 0.2

A
3
 ‘Dale’ × ‘Wray’ 275 2 18.4 −1.5 3.5 −0.8

A
3
 Dale × ‘Sugar Drip’ 258 0 19.9 −0.7 4.1 0.2

A
3
 Dale × N100 242 0 21.6 3.0* 3.9 −0.2

A
3
 Dale 242 18.6 3.8

Dale 278 20.1 3.3 B
3
 Dale–A

3
 Dale 36* 1.5 −0.5

A
3
 Wray × Dale 283 5 20.3 0.2 3.4 −1.0

A
3
 Wray × Sugar Drip 277 14 20.8 0.2 4.1 −0.3

A
3
 Wray × N100 261 −2 18.9 −0.8 4.3 −0.1

A
3
 Wray 263 19.8 4.4

Wray 273 19.9 4.3 B
3
 Wray–A

3
 Wray 10 0.2 0.1

A
3
 Sugar Drip × Dale 266 −12 20.5 0.4 4.5 0.2

A
3
 Sugar Drip × Wray 264 −9 20.1 0.1 4.1 −0.2

A
3
 Sugar Drip × N100 248 1 21.1 2.2* 4.4 0.1

A
3
 Sugar Drip 247 18.9 4.3

Sugar Drip 258 20.6 3.9 B
3
 Sugar Drip–A

3
 Sugar Drip 11 1.7 −0.4

A
3
 N100 × Dale 257 −21* 21.4 1.3 3.9 −0.7

A
3
 N100 × Wray 260 −13 20.3 0.4 4.1 −0.5

A
3
 N100 × Sugar Drip 241 −17 21.5 0.9 4.5 −0.1

A
3
 N100 205 19.7 4.6

N100 212 18.2 4.1 B
3
 N100–A

3
 N100 7 −1.5 −0.5

*Signifi cant at P ≤ 0.05.
†Score 5 to 1: 5, no lodging to 1, >75% plants lodged.
‡Signifi cance determined using a two-tailed t test of least squares means.
§Least squares mean.
¶Signifi cance of high-parent heterosis was determined using a one-tailed t test of least squares means.



1794 WWW.CROPS.ORG CROP SCIENCE, VOL. 50, SEPTEMBER–OCTOBER 2010

Pedersen, J.F., J.J. Toy, and B. Johnson. 1998. Natural outcrossing of 
sorghum and sudangrass in the central Great Plains. Crop Sci. 
38:937–939.

Quinby, J.R. 1963. Manifestations of hybrid vigor in sorghum. Crop 
Sci. 3:288–291.

Rooney, W.L. 2000. Genetics and cytogenetics. p. 261–307. In C.W. 
Smith and R.A. Frederiksen (ed.) Sorghum: Origin, history, 
technology, and production. John Wiley & Sons, New York.

Rooney, W.L., J. Blumenthal, B. Bean, and J.E. Mullet. 2007. Design-
ing sorghum as a dedicated bioenergy feedstock. Biofuels, Bio-
products, and Biorefi ning 1:147–157.

Selvi, B., and S. Palanisamy. 1987. Heterosis for stem sugar and related 
characters in sorghum. Ind. J. Agric. Sci. 57:423–424.

Shertz, K.F., and L.G. Dalton. 1980. Sorghum. p. 577–588. In W.R. 
Fehr and H.H. Hadley. (ed.) Hybridization of crop plants. ASA 
and CSSA, Madison, WI.

Torres-Cardona, S., A. Sotomayor-Rios, A. Quiles Belen, and K.F. 
Schertz. 1990. Fertility restoration to A

1
, A

2
, and A

3
 cytoplasm 

systems of converted sorghum lines. MP-1721. Texas Agric. Exp. 
Stn., Texas A&M Univ., College Station.

Vanderlip, R.L. 1993. How a sorghum plant develops. Coop. Ext. 
Serv. Contrib. 1203. Kansas Agric. Exp. Stn., Manhattan.


